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Some previously unknown relationships for determining the a 4 and a 6 
coefficients of the characteristic polynomial for polycyclic aromatic hydrocar- 
bons are presented for the first time. The structural information contained in 
these coefficients is more fully revealed. The equations derived for a4 and 
a 6 allow one to determine the characteristic polynomial by inspection for 
many small molecular graphs. Some relationships for a8 and alo are presented. 
The set of known graphical invariants (GI) or properties that remain 
unchanged in isomeric PAH6s is now shown to be GI = {a4, a 6 +  no+2r6, a~, 
d~+Ni~, No NH, N1~+Nv~, q, r}. 

Key words: Graph theory - -  Characteristic polynomials - -  Benzenoid 
hydrocarbons - -  Molecular topology - -  Graphical invariants 

I. Introduction 

Part of the intuitive modus operandi in the teaching of chemistry is that many 
molecular properties are topological in origin. Ingrained in this approach is the 
use of molecular graphs to represent pictures of chemical molecules. The mathe- 
matical relationships of  graphs provide a powerful tool for interlinking molecular 
topology with molecular properties. Various numerical topological indices have 
been contrived seeking to give a general measure of molecular structure similarity 
and dissimilarity and have been presented via concepts of molecular complexity, 
connectivity, and information content [1, 2, 3]. An allied objective is to rank and 
numerically characterize various atomic positions within a single molecule as 

* Part VIII: A periodic table for polycyclic aromatic hydrocarbons 
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with random walks and canonical labeling of the various molecular positions 
[4, 5, 6]; summing up these individual numerical atomic ranks gives a molecul:ar 
topological index. These topological indices can be used in structure/activity 
relationship studies both among different molecules and at different sites within 
a molecule, computer encoding for both storage and retrieval, and in computer 
recognition of identical structures or substructures [7, 8, 9, 10]. In more abstract 
form, the latter is a problem of graph and subgraph isomorphism [11]. An 
important goal related to the above objectives is the identification of graphical 
invariants. The characteristic polynomial represents the secular equation of a 
p~r-electron system in the Hiickel MO model of a conjugated polyene molecule, 
as well as being related to the eigenvalues of the mathematical graph [12]. As it 
will become evident from this paper, the coefficients of the characteristic poly- 
nomial are either graphical invariants in toto or contain graphical invariant 
components. 

The unique organizational format of the Formula Periodic Table for Benzenoid 
Polycyclic Aromatic Hydrocarbons (Table 1) has led to a deeper understanding 
of the mathematical/structural relationships associated with polyhexes in general 
[13, 14]. After one carefully distinguishes between the sets of internal (QI, PI) 
and peripheral (Q~ Pp) edges and vertices of a polycyclic graph, an exceedingly 
simple relationship (ds+Nic = r - 2 )  evolves which is the basis of Table 1 [15]. 
If the peripheral edges of a polycyclic graph are cut away from its internal edges 
leaving a group of acyclic graphs, then ds equals the number of acyclic subgraphs 
minus one. Alternatively, if this process leaves a polycyclic subgraph, then ds 
equals the negative value of the number of rings; for an admix of these two 
possibilities ds takes on a net value. The number of third degree vertices bounded 
by three rings is equal to N~c. Every position on Table 1 has unique coordinates 
[ds, N I e ] ,  and all PAH isomers of the same formula must obey the following 
equation: d~ +Nlc --  ~Nc - NH] - 1. Thus ds + NI~ is a graphical invariant of poly- 
cyclic graphs of considerable importance [13, 14, 15]. The broad utility of Table 
1 will be exemplified by its key role in the derivation of additional graphical 
invariants in this paper associated with the characteristic polynomial of polycyclic 
graphs that were previously unknown. 

The characteristic polynomial P ( G ; X )  can be obtained by reducing the 
secular determinant or enumerating all the Sachs subgraphs associated with a 
molecular graph G [16]. Factoring the characteristic polynomial gives the eigen- 
values corresponding to the graph. It is well known that the coefficients of the 
characteristic polynomial convey graphical information [ 17]. Consider the follow- 
ing polynomial equation for a graph, G, 

N 
P( G ; X )  = ~ anX N=n = XN-- qxN-2-- 2r3XN-3 + a4XN-4 

n=0 

+ a 5 X N - 5  + �9 �9 �9 + a N - 2  X 2 +  a N - 1 X  '[- aN. (1) 

From Eq. (1) it is evident that the values of the first four coefficients are ao = 1 
(by definition), al = 0, a2 = - q  (q = No. of graph edges), and a3 = -2r3 (r3 = No. 
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3-membered cycles or rings). Also, for benzenoid graphs it is known that aN_ 2 = 

aN_2(cyclic)+aN_2(acyclic) = aN_2(cycl ic)+lNcK+D (K is the number of 
Kekule' structures and D is the number of Dewar structures) and a N = +K  2 
[18, 19]. We will now present previously unknown relationships for a4 and a 6 
and illustrate the broad applications of the former. 

2. Derivation of  a4 

2.1. Benzenoid graphs 

In the following molecular graphs, only the C-C tr-bond framework will be 
shown and all pzr-bonds, C - H  bonds, and C and H atoms will be omitted. All 
benzenoid isomers have the same a4 values [20]. To determine the general form 
for the a4 coefficient, we use Sachs' formula [21]. 

a~= ~ (-1)~(~)2~(~);0---n_<N (2) 
s E S  n 

where s denotes a Sachs graph made up of  K2 and C,, components, Sn is a set 
of all such graphs with n vertices of a graph G, c(s) is the total number of 
components in each, and r(s) is the number of cyclic components. Thus Eq. (2) 
becomes 

a4 = E [2K2]i - 2r4 (3) 
i 

where r4 is the number of  different four-membered cycles (rings) in the graph 
G. To determine the number of pairs of K2 subgraphs in benzenoid molecular 
graphs, we apply the following simple combinatorial relationship. All benzenoid 
graphs have three basic types of bonding neighborhoods illustrated with naph- 
thalene in Fig. 1. Edge types are designated by e(m, n) where m and n are the 
degrees of  the vertices associated with the edge e. Bonds 1-2, 2-3, 3-4, 5-6, 6-7, 
and 7-8 comprise the first type [e(2, 2)], bonds 4-4a, 4a-5, 8-8a, and 8a-1 the 
second type [e(2, 3)], and bond 4a-8a the third type [e(3, 3)]. Placement of  a 
double bond between bonds of the first type excludes three edges from accepting 
a second double bond, between bonds of the second type excludes four edges, 
and between bonds of the third type excludes five edges. Since all acenes have 
six bonds of the first type and ql internal bond edges of the third type, we write 
the following simple combinatorial relationship for the number of pairs of K2 
subgraphs associated with the acenes 

6(q - 3) + (q - q, - 6)(q - 4) + q,(q - 5) 

2 
(4) 

where q is the number of  bond edges in the benzenoid graph and (q - 3 ) ,  (q - 4 ) ,  
and ( q - 5 )  are exclusion terms for the first, second, and third type of bonds, 
respectively. Since benzenoid hydrocarbons have no four-membered rings, insert- 
ing (4) into Eq. (3) gives the following equation which is valid for all benzenoid 
hydrocarbons. 
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8 l 

7 S ~ 2  

6 3 
5 4 

6"8+4,7+1"6 

q=l 1, ql=l 

= 41 

q=19, ql=5 

6.16+8"15+5.14 
= 143 

Fig. 1. Example computations of a 4 for 
representative benzenoid hydrocarbons 

q=21, qt=3 

6.18+12.17+3.16 = 180 

~ ~  A concave bay region 

l l 1r (6+_y). 18+(12-2y) �9 17+(3+y) �9 16 

= 9"18+6217+6"16 = 180 

q=21, q1=3 

6(q - 3) + (q - q, - 6)(q - 4) + q, (q - 5) 
a4(PAH6) - = ( �89  (5) 

Although pyrene (Fig. 1), anthanthrene, and related benzenoid hydrocarbons 
also have six bonds of the first type e(2, 2) most of  the other benzenoid hydrocar- 
bons do not. Fig. 1 illustrates the application of Eq. (5) on naphthalene, pyrene, 
and naphthacene,  all of  which have only 6 bonds of first type e(2, 2). Why Eq. 
(5) works for benzenoid hydrocarbons having more than the minimum of six 
bonds of the first type e(2, 2) is revealed by examining what happens to tripheny- 
lene in Fig. 1. Comparing the computation of naphthacene which has six bond 
edges of  the first type versus triphenylene with nine bonds of e(2, 2), in going 
from naphthacene to triphenylene one can see that the number  of  bond edges 
of  the first [e(2, 2)] and third types [e(3, 3)] are increased by an equal quantity 
of  y = 3 and the number  of  bonds of the second type [e(2, 3)], is decreased by 
two times the same quantity of  2 y = 6 .  Since the average of the associated 
multipliers (16 and 18) of  first and third types of  bonds is the average of  the 
multiplier (17) of  the second type of bond, it is evident that these changes always 
occur so as to preserve the magnitude of the overall expression as given by Eq. 
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(5). Thus for benzenoid hydrocarbon graphs a4 is a graphical invariant having 
the same value for benzenoid isomers of the same formula. 

2.2. All graphs 

An expanded version of Eq. 5 is now presented without proof which gives the 
correct value of a4 for all the characteristic polynomials of acyclic graphs 
[22, 23, 24], isospectral polyphenylpolyenes [25], and monocyclic and bicyclic 
graphs [23, 25, 26] conveniently tabulated. Using previous relationships [27] Eq. 
(5) becomes 

a 4 = ~ ( q 2 - 9 q + 6 N c ) - 2 r a - d a - O d 2 - O d 3 - d 4 - 3 d s - 6 d 6 - 1 0 d 7  . . . .  (6) 

where Nc is the number of carbon vertices, and di is the number of vertices of 
degree i. For alternative derivations of less comprehensive formulas for a4, the 
reader is referred to the work of Gutman [28] and T/irker [29]. 

3. Example application of Eq. (6) 

3.1. Graphs of  six or less vertices 

The application of Eq. (6) will be illustrated using the graphs shown in Fig. 2. 
The characteristic polynomial of all graphs with six or less vertices can be written 
by inspection using the relationships provided herein; note that a5 = 
-2 r5+2  ~; (K2r3)i. Consider the Balaban-Harary isospectral pair l a  and lb [30]. 
Graph l a can correspond to a conjugated olefinic hydrocarbon (or saturated 
one) but graph lb cannot. Since l a  has a four-membered ring (2r4=2) and two 
vertices of degree 1 (dl =2)  and lb has a vertex of degree 5 (3d5=3) and one 

la (7) lb (7) 

2 (-3) 3 (2) 

4 (30) 5a (9) 5b (9) 

Fig. 2. Selected graphs and their corresponding a 4 values in parentheses 
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vertex of  degree I (dl = 1), they both give a value of  a4 = 7. Thus the characteristic 
polynomial of l a  and lb  in Fig. 2 is given by P ( l a ; X ) = P ( l b ; X ) =  
X 6 - ' 7 X 4 - 4 x a + 7 x 2 + 4 X -  1 where the last term comes from the fact that l a  
and lb  shown above have only one nonaromatic Kekule' structure. The tetrahe- 
dron planar isomorphic graph 2 [22] and graph 3 [26] in Fig. 2 provide other 
demonstrative examples, and their with corresponding characteristic polynomials 
are shown below. 

2, C4; X 4 - 6 X 2 - 8 X - 3  3, C5H5; X S - 5 X 3 - 2 X 2 + 2 X  

One can see that 2 has four three-membered rings (one for each tetrahedron 
face) giving a3 = 8 and Eq. (6) gives a 4 = - - 3 ;  note that the negative sign arises 
because there are four independent four-membered rings in a tetrahedron. 
Molecular graph 3 has five o--bonds (a2 = -5 ) ,  one three-membered ring (a3 = -2 ) ,  
and Eq. (6) gives a4 = 2. Note that each vertex can only accommodate one double 
bond. 

3.2. Graphs with more than six vertices 

The planar isomorphic graph of the cube 4 [26] and the isospectral pair [30] of 
graphs 5a and 5b in Fig. 2 provide additional insights regarding the application 
of Eq. (6). The molecular graph of 4 gives a4 -- 30 after subtracting 2r4 = 12 from 
the first term in Eq. (6) since the six cube faces are four-membered rings. An 
acyclic graph with paths no longer than three bonds cannot have more than three 
terms in their associated characteristic polynomial; thus, P(5a; X)  = 
X 8 - 7 2 6  + 9 X  4 where Eq. (6) gives directly a 4 = 17 - 6 • 1 - 2 x 1 = 9 for graph 5a. 

4. The an coefficient 

4.1. Linear and monocyclic polyenes 

Table 2 presents the characteristic polynomials for the linear polyenes (Ln) which 
are easily obtained by recursion [17]. Also it is well known that each coefficient 
in Table 2 follows a Fibonacci sequence comprised of the sum of  the coefficient 
in the first row immediately above it plus the coefficient in the second row above 
and one column to the left. The coefficient (ao) in the first column of Table 2 
for the highest power of  X is one. In the second column, the coefficients increase 
f r o m  L2 by successive increments of one and are equal to the number of tr = bonds, 
a2 = - q .  The third coefficient column (a4) increases from L3 via the difference 
sequence of 1, 2, 3 , . . .  and is given by Eq. (6). The characteristic polynomial for 
the monocyclic polyenes (Cn) follows the equation of Cn = Ln - L~-2-  2. Except 
for the tail coefficients, the coefficients of the characteristic polynomial of the 
monocyclic polyenes have the same properties just described for the linear 
polyenes. The sixth coefficient (a6) for both linear and monocyclic conjugated 
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Table 2. Characteristic polynomials (Chebyshev polynomials of X/2 argument) of linear polyenes ~ 

Lo=l  
L1 = X 
L 2 = X 2 - 1 
L 3 = X 3 - 2X 
L4= X 4 - 3 X 2 +  1 
L 5 = X 5 - 4 X 3  + 3 X  

L6= X6-5X4+6X 2-1 
L 7 = X 7 - 6 X 5 +  10X 3 - 4 X  
L8 = X 8 - 7 X  6+ 1 5 X  4 -  1 0 2 2 +  1 
L 9 = X 9 - 8X 7 + 21X 5 - 2 0 X  3 q- 5X 
L t o  = X I ~  -- 35X4+ 15X 2 - 1 
L11 = X 11 - 10X 9 + 36X 7 - 56X 5 + 35X 3 - 6X 
L12 = X12 _ 11X lO + 45X 8 _ 84X 6 + 7 0 X  4 - 21X 2 + 1 
L13 = X 13 - 12X 11 + 55X 9 - 1 2 0 X  7 + 126X 5 - 56X 3 + 7X 
Lx4= X 14-13X12+66X 1~ 165X8 + 210X 6-126X4+ 28X 2 -1  
Li5 = X t5 _ 14X13 + 78X 11 - 220X9 + 330X 7 -252XS+84X3-SX 
LI6 = X 16-15X~4+ 91X 12 -286Xl~ 36X2+ 1 

a Based on the recursion L. = X L n _  1 - L n _  2 where L o = 1 and L1 = X 

p o l y e n e s  is g i v e n  b y  t h e  r e l a t i o n s h i p  o f  

a6(Ln/Cn)  = - ~ (q - 4 - 2 i ) ~ +  r(q - 4 )  - 2 r  6 
i = 0  

(q  - 4 ) ( q  - 3 ) ( q  - 2 )  
= 4- r(q  - 4 )  - 2 r  6 (7) 

6 

w h e r e  r = 0 f o r  t h e  l i n e a r  p o l y e n e s  a n d  r = 1 fo r  t h e  m o n o c y c l i c  p o l y e n e s  a n d  r6 

e q u a l s  t h e  n u m b e r  o f  6 - m e m b e r e d  r i n g s  (i.e.  r6 = 1 f o r  C6). T h u s ,  f o r  L9, a 6 ~- 

- ( 4 2 + 2 2 + 0 )  = - 2 0 ,  a n d  f o r  C9, a6 = - ( 5 2 + 3 2 +  1 ) + 5  = - 3 0 .  B r a n c h e d  p o l y e n e s  

i s o m e r i c  to  a l i n e a r  o n e  wi l l  i n v a r i a b l y  h a v e  a s m a l l e r  a 6 v a l u e .  

4.2. Benzenoid hydrocarbons 

F o r  a n y  se t  o f  b e n z e n o i d  p o l y c y c l i c  a r o m a t i c  h y d r o c a r b o n  ( P A H 6 )  i s o m e r s ,  a6 

d i f fe rs  o n l y  b y  t h e  d i f f e r e n c e  in  t h e  n u m b e r  o f  c o n c a v e  b a y  r e g i o n s  (no).  F o r  

e x a m p l e  t h e  a n t h r a c e n e  m o l e c u l e  h a s  n o  b a y  r e g i o n  (no = 0) w i t h  a 6 = - 2 9 6  a n d  

t h e  p h e n a n t h r e n e  m o l e c u l e  h a s  o n e  b a y  r e g i o n  ( n o =  1) w i t h  a6 = - 2 9 7 .  T h u s  

a 6 +  n o is a g r a p h i c a l  i n v a r i a n t  f o r  P A H 6 s  [11].  A g e n e r a l  o u t l i n e  fo r  t h e  d e r i v a t i o n  

o f  a 6 ( P A H 6 )  wil l  n o w  b e  p r e s e n t e d .  A n  e x a m p l e  a l g o r i t h m i c  c a l c u l a t i o n  o f  a 6 
f o r  n a p h t h a l e n e  is p r e s e n t e d  in  Fig.  3. S t a r t i n g  a t  t h e  t o p  o f  Fig.  3, i f  b o n d s  1 - 8 a  

a n d  2 - 3  a r e  c o v e r e d ,  t h e n  t h e  t h i r d  b o n d  c a n  h a v e  five d i f f e r e n t  l o c a t i o n s ;  i f  

b o n d s  1 - 8 a  a n d  3 - 4  a r e  c o v e r e d ,  t h e n  t h e  t h i r d  b o n d  c a n  b e  l o c a t e d  a t  f o u r  

d i f f e r e n t  p o s i t i o n s ,  a n d  so  f o r t h .  T h i s  g ives  t h e  f irst  s u m m a t i o n  se r i e s  o f  5 + 4 + 3 + 

2 +  1. O n c e  t h e  f i rs t  b o n d  1 - S a  h a s  b e e n  c o v e r e d  as  a b o v e ,  i t  c a n n o t  b e  c o v e r e d  

a g a i n .  R e p e t i t i o n  o f  t h i s  p r o c e d u r e  f o r  t h e  o t h e r  p o s i t i o n s  l e a d s  to  t h e  se r i e s  o f  
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I 8 

2 ~ 7  5+4+3+2+1=15 5.6 _ 15 
3 % ~ ~  6 2 

4 5 

6+4+3+3+2+1=19 6.7 
2 

- 2 = 2 1  - 2  

4+3+3+2+1=13 4.5 
2 

+3=  10+3 

3+3+2+1= 9 3,4 
2 

~ + 3 = 6 + 3  

2+1=3 2.._.~3= 3 
2 

1 1.2 
2 

- 1  

1 Total=-61 =a6 +2r6=-- ~i=o(6--2i)2--5 

Fig. 3. Algorithmic calculation of a 6 for naphthalene where the bonds once covered cannot be used 
again and are shown in bold 

sums presented in Fig. 3 which give the total of  a6+2r6 = -61 .  If  2 is added  to 
the second sum series starting with 6 and  3 is subtracted both  from the sum series 
starting with 4 and  3 and  not ing  the last extra bo t tom sum series of 1, the sum 
of the ar i thmetic  series is given by ~ k=O k = n (n + 1). Appl ica t ion  of this relation- 
ship to the series of sums for naph tha lene  gives 56 to which a residue of 5 must  
be added.  

( q - 5 ) ( q - 4 )  
Series of sums - 

2 

( q - 6 ) ( q - 5 )  ( q - 7 ) ( q - 6 )  
+ F 

2 2 

( q - 8 ) ( q - 7 )  + . . . ~  [q - (q - 1)][q - (q - 2)] 

2 2 

[ q - q ] [ q - ( q - 1 ) ]  ( q - 5 ) ( q - 4 ) ( q - 3 )  
- t  m 

2 6 



116 J . R .  Dias 

In  genera l ,  then  f rom each  successive pa i rs  o f  terms one can fac tor  out  the  
c o m m o n  factors  as fo l lows 

( q - 5 )  ( q - 7 )  
Series o f  sums = [ ( q - 4 ) + ( q - 6 ) ] +  

2 2 
[ ( q - 6 ) + ( q - 8 ) ] + .  �9 �9 

+ [q - (q - 1)] [q _ (q - 2 )  + q - q]. 
2 

The s econd  fac tor  in each  te rm above  is two t imes the  first fac tor  which  u p o n  
s impl i f ica t ion  gives 

Series  o f  sums = (q - 5)2+ (q - 7)2+ �9 �9 �9 + [q - (q - 1)]2 = ~ (q _ 5 - 2i)~. 
i=0 

Thus,  for  P A H 6 s  

a 6 q - 2 r 6 _ - -  ~ (q -5-2 i )2 -res idue-no  
i=0 

which  has  the  same form as Eq. (7). Using  p u b l i s h e d  da t a  [20], the  va lues  for  a, 
b, and  c in the  fo l lowing  equa t ion  were d e t e r m i n e d  for  the Nc -- 2 N . - 6 ,  2NH-4, 
and  2NH-2 row series o f  Table  1. 

a6+2r6+no = - ~ ( q - 5 - 2 i ) ~ + a q ~ + b q x + c .  
i=O 

The respec t ive  results  o b t a i n e d  are as fo l lows 

a 6 + 2 r 6 +  no = - ~ ( q  - 5  - 2 i ) / 2 +  (~)q~ -(!~)qi - 1 
i=0 

and  

a 6 + 2 r 6 +  no = - ~ (q  -- 5 - - 2 i ) ~ +  (~)q~ -- ( ~ ) q ,  + 13 
i=0 

and  

a6-~- 2r6-1- no = - ~ ( q  - 5  - 2 i ) ~ +  (~)q 2 - (~Z)q, +27.  
i=0 

The Nc = 2NH-6, 2NH-4, 2NH-2 row series have  b e n z e n o i d  PAH6 structures  with 
vary ing  in te rna l  th i rd  degree  vert ices o f  N~c---0, 2, and  4, respect ively .  I t  is a lso 
ev ident  tha t  the  last  two terms in the  above  last  three  equa t ions  vary  success ively  
by  - ( ~ ) q l  + 14. These  facts were  i n c o r p o r a t e d  into the  fo l lowing  Eq. (8) which  
then  gives the  correct  so lu t ion  for  a6 for  all  k n o w n  p u b l i s h e d  results  on b e n z e n o i d  
PAH6s  [20, 31]. 

a6 = - -  E (q -- 5 -- 2 i ) 2 +  (5)q~ _ ( ~ +  3NIc)ql  + ( 7 N I ~ -  1) - 2r  6 - no 
i=0 

= - ( ~ ) ( q  - 5)(q  - 4 ) ( q  - 3) + (5)q2 _ ( ~ +  3NTo) qr - (1 - 7 N ~ )  - 2r  6 - no 

= _(~)(q3 _ 27q2 + 146q + 36) - N~(3 q - 22) - n o -  2r6. (8) 

This equa t ion  is also va l id  for  PAH6s  having  an o d d  n u m b e r  o f  c a rbon  vertices.  
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Since Table 1 is based on the graphical invariant of  ds + N~o = constant, a similar 
derivation using ds and the column series of Table 1 should be possible. However, 
it turns out that recognizing the systematic change in the column equations in 
the last step is more difficult. 

5. The a8 coefficient 

5.1. Linear and monocyclic polyenes 

The eighth coefficient (as) for both linear and monocyclic conjugated polyenes 
is given by Eq. (9) as 

as (Ln / fn )=(~ ) (q -6 ) (q -5 ) (q -4 ) (q -3 ) - ( � 89  (9) 

which has a similar form as Eq. (7); r = 0  for the linear polyenes (L,)  and r = 1 
for the monocyclic polyenes (Cn) and r8 = 1 only for C8. 

5.2. Benzenoid hydrocarbons 

For any set of cata-condensed benzenoid isomers, a8 differs only by the following 
relationship 

Aas(cata-PAH6 isomers) = 5( r6-2)n0+ n ~ - 2 ( n 4 - 2 )  (10) 

where no is the number of bay regions, n~ is the number of separate or isolated 
bay regions, and n4 is the number of branches. The application of Eq. (10) for 
a selected number of representative PAH6s is presented in Fig. 4. Consider 

2 

13 16 

12 14 15 4 

11 5 

lOa 6 

9 8 

Dibenzo[a, l]chrysene Dibenzo[g, p]chrysene 
no=4, n;=3, no4=2, nl=0, n2=4 n0=6, n;=4, no4=6, nl=0, n2=0 
n3=0, n4=2 n3=0, n4=4 

12 1 

10 3 

9 3a 

8 

7 6 5 

Benzo[a]pyrene 
nQ=l, n~=l, no4=l, n1=l, n~=2 
n3=l, n4=l 

Fig. 4. Example benzenoid hydrocarbons and their associated perimeter topological descriptors 
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dibenzo[a, /]chrysene in Fig. 4; there are four bay regions between 6a, 6b, 14a, 
14b, 14c, 16a, and 16b (no=4) ,  but since the two bay regions between 14a, 14b, 
and 14c are adjacent, there are only three isolated (groups of) bay regions (n6 = 3). 
Two of  these bay regions are adjacent to end rings (i.e. no4 = 2) and two of them 
are not. Similarly, for dibenzo[g,p]chrysene (Fig. 4) there are six bay regions 
(no = 6), four isolated groups of bay regions (n6 = 4), and four end rings (n4 = 4) 
with all the bay regions adjacent to the end rings (no4=6). Thus, for 
dibenzo[a, /]chrysene Aas= 83 and a8 = 16 305 and for dibenzo[g,p]chrysene 
Aa8 = 120 and a8 = 16 342 since Aas(hexacene) = 0 and as(hexacene) = 16 222. 

Consider benzo[a]pyrene in Fig. 4, between the third degree-peripheral vertices 
10b and 10a there are no points (Co = 0), between 5a and 6a there is a single 
second degree point (cl = 1) numbered 6, between 3a and 5a there are the two 
second degree points (c2=2) of numbers 4 and 5, between 12a and 3a there are 
the three second degree points (Ca = 3) of numbers 1, 2, and 3 and finally between 
the peripheral vertices of  6a and 10a there are four second degree points (c4 = 4) 
of numbers 7, 8, 9, and 10; the quantity of each of these five different sequences 
of intervening second degree points between peripheral third degree vertices in 
a particular structure is designated by no, r/l, //2, //3, and n4, respectively. The 
simple sum of the number of each of these five sequences is given by no + r/l +/'/2 d- 
//3 + n4 = Npc  which for benzo[a]pyrene (Fig. 4) is 1 + 1 + 2 +  1 + 1 = 6, i.e., there 
is one sequence with no intervening second degree points (between 10a and 10b), 
one sequence with one intervening second degree point (between 5a and 6a), 
two sequences with two intervening points (between 3a and 5a and 10b and 12a), 
one sequence with three intervening points (between 12a and 3a), and one 
sequence with four intervening points (between 6a and 10a) and the sum of these 
sequences gives the number of peripheral third degree carbon atoms. When there 
are no intervening points Co--0, one intervening point cl = 1, two intervening 
points c2 = 2, three intervening points Ca = 3, and four intervening points c4 = 4. 
Since these intervening points correspond to second degree vertices between the 
outer third degree vertices, the total number of  second degree vertices is given 
b y  NH=noco+nlcl+n2c2+rl3Ca-l-n4c4 which for benzo[a]pyrene gives 12= 
1 �9 0+1  �9 1+2  �9 2+1  �9 3+1  �9 4; note that na+ n3 = even number-< NH since NH----- 
n~W3n3 for even PAH6s. The number of bay regions in a PAH6 is given by its 
no value, and the number of branches is given by n4; note that the definition of 
bay region used here is not restricted to no regions adjacent to terminal rings. 
Adding the above equations gives no+ 2n~ + 3n2+4n3 q- 5n 4 ~--- Npcq-  N H = 

Nr = 2NH--6 =qp for PAH6s which says that benzenoid structures having 
the same number of formula hydrogens (Nn) have the same number of  peripheral 
bonds (qp) and are constrained by the same range of n values. 

A number of correlations exist between Table 1 and the no, n2, n2, n3, and n4 
values for PAH6s. For the cata-condensed benzenoids (No = 2 N H - 6  row series 
of Table 1), n 3 = 0. Strictly peri-condensed PAH6s have formulas lying on the 
left-hand diagonal boundary of Table 1 and have connected excised internal 
structures; n 4 = 0 for all strictly peri-condensed benzenoid PAH6s. By subtracting 
the first two equations in the prior paragraph, it can be easily shown that for 
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PAH6s the following four-variable equation is obtained: 

-no+ nz+ 2n3 + 3n4 = 6. 

For the Nc = 2 N H - 4  row series, n 3-< 4 for all PAH6 structures with N~c = 2. In 
general, n 3-< 2Nic for all benzenoid structures where the equality occurs only 
when Nic= 1 or 2 (e.g., in perylene). From the first equation presented in the 
previous paragraph no, nl, n2, rt3, and n4--- Nec where the equality is only applicable 
for coronene having n2 = Np~. Thus, n 3 = 0 for cata-condensed and r/n= 0 for 
strictly peri-condensed PAH6s are necessary but not sufficient topological require- 
ments for these classes of  polyhexes. I f  any three values for no, n2, n3, and n4 
are known for polyhexes, then the fourth is known via the above equation; if nl 
and any three of  the remaining topological perimeter parameters are known, then 
NH and Npo are also known. While nl may have any value by the above equation, 
if no = n2 = t'/3----0, then //4 must equal two which is the case for the acenes. 
Similarly, if no = n2 = t14 = 0 ,  then r/3 must equal three which is the case for the 
perinaphthyl monoradical  ( C 1 3 H 9 ) .  For no = n3 = n4 = 0, n2 must equal six which 
is the case for coronene. One must conclude from the negative sign before no 
in the above equation that no benzenoid PAH6 structure can exist with n2 = n3 = 

n4 = 0.  

The coefficients of  the characteristic polynomial  are made up of acyclic (a~ c) 
and cyclic (a~,) contributions: a,  = a~+a~. The first two even coefficients (ao 
and a2) of  characteristic polynomial have no cyclic contributions, and for ben- 
zenoid PAH6s a4(PAH6)= a~(PAH6)  and a6(PAH6)= a~-2r6  where r 6 is the 
number  of  hexagonal rings. The cyclic contribution to the eighth coefficient for 
PAH6s comprises of all the combinations of one K2 and one C6 graph components.  
All benzenoid isomers of  a particular PAH6 formula have the same a~ value. 
For the acene cata-condensed PAH6s, if the C6 component  occupies one of the 
two end rings, then 8 edges are unavailable for the K2 component;  similarly if 
the C6 component  occupies one of the inner rings then 10 edges are unavailable 
for the K2 component.  Thus the cyclic contribution to the eighth coefficient of 
the characteristic polynomial  for all cata-condensed benzenoid PAH6s must be 
given by 

a~(cata-PAH6) = 22(q - 8) + 2(q - 10)(r6 - 2) (11) 

where q is the total number  of edges in the PAH6. Why this equation is also 
valid for the branched cata-condensed benzenoids is revealed by comparing 
naphthacene and triphenylene in Fig. 1. For naphthacene,  there are two outer 
rings excluding 8 edges and two inner rings excluding 10 edges giving 
a ~ = 2 . 2 ( 2 1 - 8 ) + 2 ( 2 1 - 1 0 ) ( 4 - 2 ) = 2 . 2 . 1 3 + 2 . 1 1 . 2 = 5 2 + 4 4 = 9 6 ;  whereas, 
triphenylene has three outer rings excluding 8 edges and one inner ring excluding 
12 edges giving a ~ = 2 ( 2 + 1 ) ( 2 1 - 8 ) + 2 ( 2 1 - 1 2 ) ( 4 - 2 - 1 ) = 2 . 3  �9 1 3 + 2 . 9 . 1  = 
78 + 18 = 96. Thus it is evident that these combinatorial  changes always occur so 
as to preserve the overall magnitude of a~ between benzenoid isomers of  the 
same formula. By the same reasoning, it can be shown that for all squared 
peri-condensed benzenoid PAH6s (naphthalene, pyrene, anthanthrene, etc.) in 
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the Nc---3NH-14 column series of  Table 1, the value of a~ is given by 

a~(squared-PAH6) = 22(q - 10) +22(q - 9 )  +2 (q  - 11)(r6 - 4 ) .  

Using the periodicity of  Table 1, it can be shown that these equations, can be 
generalized to the following which is valid for all odd and even carbon PAH6s. 

a~(PAH6) = 22(q - 8) + 2(q - 10)(r6 - 2) - 2NIr 

= 22(q - 10) + 22(q - 9) + 2(q - 11)(r 6 --  4) + 2ds. (12) 

Refer to Gutman ' s  work for an alternative derivation of Eq. (12) [19]. 

By analogy to the previous method used to determine the topological relationship 
for a6, the following relationship is constructed for as(acenes): 

a c  a8(acenes) --- a~+ a8 

= a~ + (1) (q  _ 7)(q - 6)(q - 5)(q - 4) + aq 3 + bq 2 + cq, + d. 

Using known data to solve for a, b, c, and d and combining the results with Eqs. 
(10) and (11) gives 

as(cat-PAH6) = 4(q - 8) +2 (q  - 10)(r6-  2) + 5(r6 - 2 ) n o  

+ n 6 -  2(n4 - 2) + @4)(q - 7)(q - 6)(q - 5)(q - 4) - (~)q3 

+ 2 2 q 2 - ( ~ ) q ,  + 2 (13) 

which is valid for all cata-condensed benzenoid hydrocarbons. 

Other row series can yield equations similar to Eq. (13) but the sparse data 
available has inhibited solution of a comprehensive equation for a8 comparable 
to that of  Eq. (8) for a 6. Also, a more general form of Eq. (10) needs to be 
discovered. Currently the following relationship of Aa8(PAH6 isomers)=  
5 ( r 6 - -  2)no+ n ~ -  2(r t  4 -  2) + ( n 4 -  no)Nit appears  to predict 88% of the known 
data [20] with the remaining 12% of the data being off by +1. Whether this 
indicates that current set of  perimeter descriptors are inadequate or that this 
computer  generated data incorporates a +1 round-off error needs to be deter- 
mined, and work is currently in progress in our laboratory to generate more 
characteristic polynomial  data for PAH6s. 

Utilization of  relationships previously derived [27] converts Eq. (12) to 

a~ = 2(q 2 - 13q - 12) - 2Nc(q - 15) -2 r8  - 4 d l  --2d2b 

+Od3+ 2 d 4 + 4 d s + 6 d 6 + .  �9  

where d2b is the number  of  second degree vertices in a conjugated polyene branch 
(b for branch) of  a o--bond graph. This equation is valid for all benzenoid 
hydrocarbons with and without conjugated polyene substituents [25]; it is also 
valid for all acyclic conjugated polyenes for which this equation always gives 
a s = 0. All molecular graphs containing less than eight vertices or no rings have 
a 8 = 0, and the addition of other parameters  can broaden the applicability of  this 
equation to other classes of  molecular graphs. 
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6. The alo coefficient 

The cyclic contribution to the tenth coefficient a 1o of the characteristic polynomial 
for cata-condensed benzenoid hydrocarbons differs among a set of PAH6 isomers 
according to Aa~o(cata-PAH6 isomers)= 4no+ 8(n4--2). A straightforward com- 
binatorial derivation of a~o for the acenes can be easily accomplished by consider- 
ing all possible combinations of one C6 and two K2 components, and combining 
this result with the above relationship leads to 

-a~o(cata-PAH6) = 10(q - 11) +2(qt - 1)(5q -61)  

+ 2(r6 - 1) + 2(q - 13)[5(r6- 3) + 1] + 4(q - 14)(r 6 -  3) 

+4(q - 14)[2(r6-4)qi  - (r6 - 2)(r6 - 1) +6] 

+ ( q - 1 5 ) ( r 6 -  2)( qi - 2)+ 4no+ 8 ( n 4 -  2). (14) 

7. Conclusion 

An isomeric set of graphs has the same number of edges (a2 = - q ) ,  rings (r) 
and vertices (p) which are graphical invariants. In this work, it has been shown 
that for an isomeric set of polycydic graphs composed of only second and third 
degree vertices and no internal second degree vertices that ds + Nit- -  constant is 
also a graphic invariant. For such an isomeric set of polycyclic graphs without 
tetragonal rings, a4 and a6+no+2r6 (the latter without trigonal rings) of the 
characteristic polynomial are also graphical invariants. 

From the contents of what has been presented, it should be apparent that Eq. 
(6) is almost universal in applicability to graphs in general. The explicit inclusion 
of d2 and d 3 with zero coefficients in Eq. (6) is to emphasize the difference series 
of -1 ,  0, 1, 2, 3, 4 , . . .  between the coefficients of d~. 

Eq. (8) appears to be valid for benzene and all polycyclic aromatic hydrocarbons 
not possessing trigonal or tetragonal rings. The derivations presented herein 
emphasize the broad utility of Table 1. 

If one compares the values (in parentheses) of a 4 for graphs corresponding to 
2,2-dimethylbutane (6), 2,3-dimethylbutane (7), 2-methylpentane (8), 3-methyl- 
pentane (8), and n-hexane (9), one notes that the relative magnitude of a4 parallels 
the boiling points and heats of vaporizations of these compounds where 2- 
methylpentane and 3-methylpentane have the smallest differences "in these phy- 
sical properties. This correlation emphasizes the relationship of a 4 to graph 
connectivity [2, 4]. Eqs. (6) and (8) not only allow us to determine the characteristic 
polynomial of  small molecules by inspection but they are useful in checking 
computer HMO calculations of larger molecules. 

Although, two less general equations have been previously presented for a4 
[28, 29], one after submission of this paper, this work emphasizes the utility of 
the relationship for a 4 in determining the characteristic polynomial for small 
molecules of interest to organic chemists by inspection [12, 26]. The usefulness 
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of a4 in determining an upper bound for the E= energy for alternate 
conjugated hydrocarbons has been delineated [29]. Eqs. (8), (10), (13), and (14) 
have been derived in toto in this work for the first time, and alternative derivations 
for Eqs. (6) and (12) have been presented. 

The perimeter topology of  polyhexes has been detailed herein, and the perimeter 
topological parameters of  no, n~, nl, n2, rt3, and n4 are useful descriptors. From 
this work our intuition that the bay region and branching parameters (no and/74, 
respectively) are the more important ones has been corroborated [of. Eqs. (8), 
(10), and (14)]. By equating the two sides of  Eq. (12), it can be easily shown 
that d s+Nrc=  r - 2  is obtained; thus a~(PAH6) is also a graphical invariant. 
Topological equations for polyhexes in terms of perimeter descriptors have been 
derived for the first time. An independent derivation of a more comprehensive 
relationship for a4 has been presented, and equations for a 6 and a8 have been 
derived for the first time. The set of known graphical invariants (GI) for PAH6s 
is summarized as follows 

GI ={a4, a6+no+2r6, a~, ds +Nic, No NH, NIr Npc, q, r}. 

Although the unavailability of more extensive characteristic polynomial data has 
thwarted the solution of  comprehensive relationships for as(PAH6) and 
al0(PAH6), the results thus far obtained suggest that the approach presented in 
this paper has further potential in identifying other structural parameters associ- 
ated with the molecular topology of PAH6s. Before this approach can be fully 
manifested, a set of mathematical descriptors may be required which would allow 
one to totally differentiate each isomer from a set of  PAH6s. While it is evident 
from this work that the perimeter topological parameters of no, n6, n04, nl, n2, 
n3, and n4 are useful descriptors, they do not allow one to clearly distinguish 
between all PAH6 isomers. 

Since n 3 = 0 for the cata-condensed benzenoid hydrocarbons, one can deduce 
from the relationship of  - n o +  n2 + 3n4-= 6 that there are only two independent 
perimeter topological parameters for the cata-condensed PAH6s, and this is 
consistent with the qualitative observation that the more bay regions and branch- 
ing possessed by a cata PAH6 isomer, the more stable it is relative to its other 
isomers. Since n4 = 0 for strictly peri-condensed PAH6s, a similar argument can, 
likewise, be presented for these PAH6s. For PAH6s that are neither cata- 
condensed nor strictly peri-condensed, there are three independent perimeter 
topological parameters. From the relationship of  ds+N1c = r - 2 ,  it must be 
deduced that there are also two independent internal topological parameters for 
PAH6s. 
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